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USING AIR TRAFFIC CONTROL TASKLOAD MEASURES AND COMMUNICATION


EVENTS TO PREDICT SUBJECTIVE WORKLOAD


Introduction 

Sensitive and valid workload measures are needed 
for en route air traffic control (ATC) to identify 
potential negative effects on controllers of using new 
forms of automation or ATC procedures (Wickens, 
Mavor, & McGee, 1997) and to ensure that intended 
benefits for controller productivity have been achieved. 
ATC workload can be influenced by many factors, 
including numbers and configurations of aircraft 
moving through a sector, the activities the controller 
performs to control those aircraft, and the controller’s 
reaction to the air traffic situation. 

Measures of ATC workload are typically based on 
controllers’ subjective ratings, made either while con-
trolling air traffic or just afterwards. One problem 
with using workload ratings obtained while control-
ling traffic is that their values may be influenced by 
the effort required to generate and record the ratings. 
On the other hand, workload ratings provided after 
the controller finishes controlling traffic may be influ
enced by extraneous factors such as remembering only 
events that occurred early or late in the traffic sample 
(e.g., due to proactive or retroactive inhibition). 

Research is being conducted to develop objective 
workload estimates that could replace subjective 
workload ratings by computing variables from rou
tinely recorded ATC data (Buckley, DeBaryshe, 
Hitchner, & Kohn, 1983; Galushka, Frederick, 
Mogford, & Krois, 1995; Mills, Pfleiderer, & Man
ning., 2002; Stager, Ho, & Garbutt, 2001). These 
taskload measures usually describe both aircraft and 
controller activities. It is desirable, from a research 
perspective, to use objective taskload measures rather 
than subjective workload ratings because it is often 
easier and less expensive to obtain access to routinely-
recorded ATC data than it is to have air traffic 
controllers participate in research simulations. An-
other reason for using objective taskload measures 
instead of subjective measures is that they are not 
influenced by rater errors such as leniency/severity 
errors or errors of central tendency (Landry, 1989). 
Finally, computing objective measures from recorded 
data will not interfere with controllers’ activities (thus, 
not affecting their perceived workload). 

Although using objective measures has some obvi
ous benefits, the argument has also been made that 
they do not provide a complete representation of ATC 
workload. While these measures capture variations in 
ATC activity, they cannot capture a controller’s per
sonal reaction to the air traffic situation (Stein, 1998). 
Stein contends that controllers’ individual differences 
influence their perception of the effects of a particular 
taskload. Thus, subjective workload ratings are af
fected by a component that cannot be derived simply 
by analyzing recorded data. However, other research 
has found significant correlations between objective 
taskload and subjective workload measures (Stein, 
1985; Manning, Mills, Fox, Pfleiderer, & Mogilka, 
2001), suggesting that using taskload measures alone 
may provide sufficient information to evaluate the 
effects of new systems. 

Communications between pilots and controllers 
and between controllers and other controllers are also 
recorded routinely and so may be included among a 
set of objective taskload measures. Communication 
events can include counts of the number of com
munications, the timing with which these events 
occur, and the content of the communications. 

Pilot-controller communications are thought to be 
related to ATC workload because complicated com
munications can increase workload (Morrow and 
Rodvold, 1998). Bruce (1993) found that both traffic 
volume and traffic complexity (both frequently used 
indicators of ATC taskload) were significantly related 
to the number of pilot/controller communications. 
Cardosi (1993) examined numbers and timing of 
communication events as a function of message type 
in a descriptive study that analyzed timing of voice 
communications related to traffic avoidance. As part 
of this study, she used numbers of communications 
per hour to classify time periods as high- or low-
workload. 

Corker, Gore, Fleming, and Lane (2000) used 
communication time as an indicator of workload 
against which to assess alternative free flight condi
tions. Porterfield (1997) examined the relationship 
between the amount of time spent communicating 
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and on-line workload ratings. He found a correlation 
of r = .88 and concluded that controller communica
tion duration is a valid measure of workload. 

Besides indicating the amount of activity, one 
advantage of using communication events as an indi
cator of workload is that their content and associated 
affective components may indicate the amount of 
effort the controller experienced at the time the event 
occurred. Thus, these measures may contribute at 
least part of the subjective component of workload 
that Stein (1998) argues is not accounted for by other 
taskload measures. Moreover, analyzing recorded voice 
communications does not interfere with the 
controller’s task. 

On the other hand, there are some disadvantages 
associated with the use of communications measures. 
First, determining the number and duration of com
munication events requires a considerable amount of 
time and manual labor, and coding their content and 
affect requires even more effort. Thus, the use of 
communication events would seem to be inconsistent 
with the goal of obtaining an easily-computed set of 
taskload measures, unless they add significantly to the 
prediction of subjective workload. Second, the timing 
of recorded communication events does not account 
for all communication activity because some exchanges 
(e.g., radar [R] controller to data [D] controller com
munications) are not recorded. Thus, analysis of re-
corded communications will provide, at best, a 
lower-bound estimate for subjective workload. 

Previous research suggests that certain communica
tions measures, such as number and duration, are asso
ciated with workload. However, a related question that 
must be answered is whether distinguishing between 
pilot/controller and controller/controller communica
tions or coding the content of communications will add 
a unique component to the prediction of subjective 
workload over and above that contributed by other types 
of objectively measured controller and aircraft activities. 
If counts and durations of communication events mea
sure something different than ATC taskload measures, 
as evidenced by low correlations between the variables, 
and they contribute a unique component to the predic
tion of subjective workload, then it would be useful to 
expend the effort required to obtain and analyze them. If, 
on the other hand, communication events are highly 
correlated with other objectively-measured ATC activi
ties and subjective workload, then they will contribute 
little unique variance to the prediction of subjective 
workload, and expending the effort required to extract 
them would be of little value. Given the results of 
research that suggest that communication events are 
related to taskload, we expect that the communication 

events measured here will be so highly correlated with 
our taskload measures that they will not make a unique 
contribution to the prediction of subjective workload. 

The purpose of this study was to examine the 
relationship between communication events, subjec
tive workload, and objective taskload measures. The 
communication events analyzed were total number of 
communications, total time spent communicating, 
average time spent for an individual communication, 
and communication content. The number of com
munication events and time spent communicating 
were analyzed separately for each speaker (controller, 
other). The number and timing of a controller’s 
communications should be related to subjective 
workload, but having to attend to other speakers 
could also be a component of workload. 

We proposed several hypotheses about the relation-
ships between these measures. First, we expected that 
the total number and duration of communication 
events would be significantly related to busyness—as 
measured both by subjective workload and objective 
taskload measures. As the traffic situation gets busier, 
more communication events should occur, and more 
time should be spent communicating, both by the 
controller and other speakers. 

Second, we expected that the average time for an 
individual communication event should be negatively 
related to both workload and taskload. As the traffic 
situation gets busier, the amount of time spent on a single 
communication should decline. The time spent on an 
individual communication event is likely to be related to 
the identity of the speaker; that is, controllers are likely 
to reduce the amount of time they spend on an indi
vidual communication while other speakers are unlikely 
to be as affected by activity occurring in the sector. 

Third, we expected that the content of communi
cation events may be related to sector activity. As the 
situation gets busier, there should be more clearances 
issued, readbacks, and pilot requests. However, the 
number of advisories or unrelated remarks may not 
change. We also expected that the number of clear
ances issued to pilots should be related to subjective 
workload, while radio frequency changes issued should 
be unrelated. 

Fourth, if communication events are significantly 
related to sector activity, we expected that they would 
not contribute uniquely to the prediction of subjec
tive workload, over and above the contribution of the 
taskload measures. Thus, we expected that taskload 
measures alone would account for most of the vari
ance in a set of subjective workload ratings and this 
prediction would not improve by adding communica
tion measures to the set of predictors. 
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If any measures derived from communication events 
do indeed add a unique component to the prediction 
of subjective workload, then it would be worth taking 
the time to analyze the transmissions. On the other 
hand, if they do not add a unique component to the 
prediction of subjective workload, it would not be 
necessary to analyze them. 

Method 

This study examined statistical relationships be-
tween communication events, objective taskload mea
sures, and subjective workload measures. The 
communication events and taskload measures were 
obtained from samples of routinely-recorded ATC 
data. The workload measures were provided by sub
ject matter experts (SMEs) who observed graphical 
displays of the same ATC data samples (hereafter 
called “traffic samples”) and rated the workload they 
thought the R controller responsible for the sector had 
experienced. Each component of the study is dis
cussed in more detail below. 

Traffic Samples 
System Analysis Report (SAR) data and voice com

munication tapes were obtained for 12 traffic samples 
recorded during January, 1999, at four sectors (sec
tors 14, 30, 52, and 54) in the Kansas City Air Route 
Traffic Control Center (ARTCC). The ATC data 
were extracted by the Data Analysis and Reduction 
Tool (DART; Federal Aviation Administration, 1993) 
and the National Track Analysis Program (NTAP; 
Federal Aviation Administration, 1991). The result
ing files were processed both by the Systematic Air 
Traffic Operations Research Initiative (SATORI; 
Rodgers & Duke, 1993) and Performance and Objec
tive Workload Evaluation Research (POWER; Mills, 
Pfleiderer, & Manning, 2002) software programs. 
SATORI synchronizes extracted data from DART 
and NTAP files with tapes containing the R controller’s 
voice communications, using the time code common 
to both data sources, while POWER uses data from a 
subset of the DART files to compute taskload mea
sures. Three traffic samples were re-created for each 
sector. One traffic sample (used to train the SMEs) 
was eight minutes long. The two remaining experi
mental traffic samples were both 20 minutes long. 

Participants 
Participants were 16 en route air traffic control 

instructors from the FAA Academy in Oklahoma 
City, OK. All had formerly been fully-certified con-
trollers at en route centers. Two participants had 

controlled traffic at some of the Kansas City Center 
sectors included in the traffic samples, though none 
had worked all the sectors included in the study. 

Sector training materials 
Computerized training sessions were provided that 

described the characteristics and applicable proce
dures for each sector. Participants examined copies of 
sector maps and the sector binder (which contained 
additional information about the sector). Participants 
could also examine flight plan information (derived 
from recorded flight strip messages) for each aircraft 
controlled by the sector during the traffic sample. 

Subjective workload 
Participants provided a subjective workload assess

ment using the Air Traffic Workload Input Tech
nique (ATWIT; Stein, 1985). The ATWIT measured 
mental workload in “real-time” by presenting audi
tory and visual cues that prompted a controller to 
press one of seven buttons within a specified amount 
of time to indicate the amount of mental workload 
experienced at that moment. In this study, instead of 
rating their own workload, the participants entered 
ATWIT ratings to indicate the amount of mental 
workload they thought the R controller experienced 
in reaction to the taskload that occurred during the 
traffic sample. The participants were prompted every 
four minutes during each traffic sample to provide 
ATWIT ratings. 

Objective taskload measures 
The objective taskload measures used in this study 

were derived from the POWER software (Mills, 
Pfleiderer, & Manning, 2002). The POWER mea
sures included information about the number of con-
trolled aircraft; handoffs made and accepted; altitude 
changes; controller data entries and data entry errors; 
variations in aircraft headings, speeds, and altitudes; 
and the average time aircraft were under control. In 
all, 23 POWER measures were utilized in this study. 

Communication events 
Communication events were obtained from voice 

tapes associated with the traffic samples. The measures 
analyzed in this study were the total number of commu
nications, total time spent communicating during a 
traffic sample, and time required for individual commu
nication events (for all speakers, and analyzed separately 
for the controller and other speakers). 
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The communication events were also categorized 
by content. The content categories were based on a set 
derived by Prinzo, Britton & Hendrix (1995), and 
consisted of 1) Address, 2) Courtesy, 3) Clearance, 4) 
Advisory/Remark, 5) Request, 6) Readback/Acknowl
edgment, and 7) Non-codable. The clearance cat
egory was then divided into two sub-categories, 
Instructional Clearances and Frequency Changes, to 
distinguish between clearances instructing an aircraft 
to proceed and more routine instructions for the pilot 
to change the radio frequency when leaving the sector. 
Communications were not otherwise separated into 
specific message types (e.g., altitude or heading clear
ance) or coded as errors (e.g., transposed numbers/ 
letters) in order to retain sufficient numbers for analysis. 

Procedure 
Participants reviewed a description of the study, 

completed a consent and a biographical information 
form, then reviewed instructions for making the 
ATWIT workload assessments, as well as two other 
types of post-scenario subjective workload assess
ments not analyzed in this study. For each of the four 
sectors, participants 1) reviewed training materials, 2) 
observed one 8-minute training traffic sample, and 3) 
observed two 20-minute experimental traffic samples. 
To ensure continuity, all traffic samples for a sector 
were shown concurrently as a block. The order of 
observing the four blocks of traffic samples (corre
sponding to the four sectors) was counter-balanced, as 
was the order of presentation of the two experimental 
traffic samples within each block. 

During each traffic sample, participants recorded 
any mistakes using a behavioral observation form (see 
Manning et al., 2001, for more details). The ATWIT 
aural prompt occurred every four minutes, and par
ticipants responded by entering a number between 1 
and 7 on a keypad. At the end of each traffic sample, 
participants completed the other subjective workload 
assessments, summed errors they had recorded, then 
completed an over-the-shoulder performance rating 
form (see Manning et al., 2001, for more details). 
Completing the training process and observing the three 
traffic samples for each sector required about 1½ hours. 

Data processing 
Communication events during each traffic sample 

were transcribed. Message contents of each transmis
sion were categorized, along with the identity of the 
speaker (i.e., controller, pilot, other speaker) and the 
start and stop times. These data were used to compute 
the total number of communications and time spent 

communicating during each 4-minute period, as well 
as the mean time for individual communication events 
and their contents. 

The 23 POWER measures were computed for the 
five 4-minute segments included in each experimental 
traffic sample. The other two workload assessments 
were not analyzed in this study because they were only 
obtained at the end of each traffic sample; thus, only 
eight observations (one for each traffic sample) were 
available for analysis. 

The ATWIT ratings were averaged across partici
pants for each 4-minute segment included in each ex
perimental traffic sample, resulting in 40 observations. 

Results 

Subjective workload. ATWIT ratings, when aver-
aged across 4-minute time periods within the eight 
traffic samples, ranged between 2.01 and 3.54. The 
mean ATWIT rating across the eight traffic samples 
was 2.76 (SD = .59). This value is significantly lower 
than 4 (t(39) = -13.2, p < .001), the mid-point of the 
7-point workload scale, suggesting that participants 
thought that workload was generally low during the 
traffic samples. 

Communication events. Nine hundred ninety-nine 
communication events (or, on the average, about 125 
per traffic sample) were recorded during the eight 
traffic samples. Four hundred seventy-one of these 
(47%) were made by a controller, and 528 (53%) were 
made by another speaker (pilot or other controller.) 
The average number of communication events for a 4-
minute period was 25.0 (SD = 10.0). Controllers 
made, on the average, 11.8 (SD = 4.8) of the commu
nications, while other speakers made 13.2 (SD = 5.4). 

On the average, the total amount of time spent 
communicating during a 4-minute period was 69.18 
seconds (SD = 25.0), or about 29% of the 240 avail-
able seconds. Controllers spent, on the average, 38.3 
seconds (SD = 15.3) speaking during each 4-minute 
period, while others spoke for an average of 30.9 
seconds (SD = 12.1). 

The average duration of a single communication 
event was 2.86 seconds (SD = 0.63). Single commu
nication events for controllers lasted, on the average, 
3.38 seconds (SD = 0.95), while single communica
tion events for other speakers lasted, on the average, 
2.41 seconds (SD = 0.60). 

The average number of communication events by 
content is shown in Table 1. Because each transmis
sion may have included more than one topic of con
versation, each communication event may include 
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Table 1. Descriptive statistics for communication event content categories. 

Content of communication events Mean SD 
Address 15.1 5.4 
Courtesy 4.4 2.6 
Advisory 5.2 3.2 
Request 2.6 2.3 
Readback 9.9 4.6 
Instructional clearances 3.8 2.1 
Frequency changes 2.4 1.8 

more than one content category. Thus, the number of 
times a content category was addressed in a 4-minute 
time period was greater than the number of commu
nication events that occurred. 

Addresses occurred most frequently, on the average, 
about 15 times in a 4-minute period. Readbacks oc
curred about 10 times per period. Requests, instruc
tional clearances, and frequency changes occurred least 
often. Non-codable communications were not reported 
here and were excluded from all subsequent analyses. 

Table 2 shows inter-correlations between the com
munication events computed for the 4-minute peri
ods. Total times and numbers of communications, for 
both controllers and all other speakers, were highly 
correlated with each other. The average times for 
individual communication events were significantly 
correlated with each other and with the total number 
and timing of communication events (with a negative 
valence), but the correlations were not very high. The 
number of Addresses was significantly correlated with 
all other content categories, but that was not true of 
any other content category. Readbacks had high cor
relations with Addresses and Advisories, and were 
related to all other content categories except Fre
quency Changes. Frequency Changes were only sig
nificantly related to Addresses and Courtesies. 

While interesting, the pattern of correlations was 
difficult to interpret, so two Principal Components 
Analyses (PCAs) with Varimax rotation were conducted 
to identify a smaller set of components that would 
describe the relationships between the communication 
events more concisely. The first PCA included only the 
variables describing the number and duration of com
munication events. The second PCA included only the 
content categories for the communication events. We 
decided that because counts and timing of communica
tion events were sufficiently different from their content, 
separate PCAs were warranted. 

The first PCA, which included variables describing 
the number and duration of communication events, 
produced two components with eigenvalues greater 
than 1. The two components accounted for 81.6% of 
the variability in the data set. The rotated component 
matrix is shown in Table 3. The entries in the table are 
correlations between each communication measure 
and the two components derived from the analysis. 
For ease of interpretation, correlations less than .3 
were excluded from the table. 

The number and duration of all communications 
that occurred during the 4-minute period had high 
correlations with component 1 and, thus, it was 
labeled All Communications Number and Duration. 
The mean time for an individual communication 
event, both for controllers and other speakers, had the 
highest correlations with component 2, although to
tal communication time for controllers was positively 
correlated and number of communications by other 
speakers was negatively correlated. Thus, component 
2 was labeled Individual Communication Duration. 

The second PCA, which included variables de-
scribing the communication content categories, pro
duced three components with eigenvalues greater than 
1. These components accounted for 84.2% of the 
variability in the data set. The rotated component 
matrix is shown in Table 4. For ease of interpretation, 
correlations less than .3 were excluded from the table. 

Both Requests and Advisories had the highest cor
relation with component 1, although Readbacks and 
Addresses were also correlated. Thus, component 1 
was labeled Requests and Advisories. Frequency Changes 
and Courtesies had the highest correlation with com
ponent 2, although Addresses and Readbacks were 
also correlated. Thus, component 2 was labeled Fre
quency Changes/Courtesies. Instructional clearances had 
the highest correlation with component 3, although 
addresses, advisories, and readbacks were also correlated. 
Thus, component 3 was labeled Instructional Clearances. 
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Table 3. Rotated component matrix for 2 principal components representing number 
and duration of communication events. 

Communication number and

duration measures


Total N comms – controller

Total N comms – other speaker

Total comm time - controller

Total comm time – other speaker

Mean time individual comm –

controller

Mean time individual comm – other

speaker


Comp 1: All 
Communications 
Number and Duration 

.95 

.90 

.83 

.93 

Comp 2: Individual 
Communication 

Duration 

-.35 
.38 

.87 

.74 

*Correlations less than .3 are not displayed. 

Table 4. Rotated component matrix for 3 components representing communication content 
categories. 

Communication content Comp 1: Requests/ Comp 2: Frequency Comp 3: Instructional 
measures Advisories Changes/ Courtesies Clearances 

Address .50 .53 .53 
Courtesy .84 
Advisory .81 .38 
Request .93 
Readback .60 .40 .60 
Instructional clearance .92 
Frequency change .96 

*Correlations less than .3 are not displayed. 
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Taskload measures. Table 5 shows descriptive statis
tics for the 23 POWER measures averaged across the 
4-minute periods in each traffic sample. Some of the 
POWER measures (primarily certain kinds of data 
entries, such as handoffs and altitude changes) oc
curred several times during the 4-minute periods. 
However, many of the other data entries (e.g., 
pointouts, data block offsets, Distance Reference In
dicators [DRIs, also known as J-rings], track reroutes) 
and the conflict alerts (both displayed and suppressed) 
occurred very infrequently. In fact, many of the vari
ables occurred in fewer than 30% of the time segments, 
resulting in near-zero means and corresponding stan
dard deviations that were greater than the means. Subse
quent analyses excluded these infrequent variables. 

Moreover, two variables (R controller data entries 
and D controller data entries) were a compilation of 
all subsets of specific data entries (such as Data Block 
Offsets, Route Displays, R and D controller Pointouts, 
DRIs requested and deleted, and altitude changes). If 
all specific data entries were summed, they would 
total the values of the R and D controller data entries. 

It is not appropriate to analyze both individual mea
sures and a variable that comprises their sum, so for 
the purpose of this study, the individual measures 
were excluded from further analysis. However, the 
average time to accept a handoff and average time 
until initiated HOs are accepted were retained for 
analysis because they are independent of the number 
of handoffs made and accepted. 

To reduce the number of POWER measures by 
grouping similar variables, correlations between the 
measures were first computed. These are shown in 
Table 6. Significant correlations were observed be-
tween a number of the variables. However, visual 
examination of the correlations did not provide a 
systematic method for interpreting the relationships 
between variables. A PCA, with Varimax rotation, 
was conducted to identify a smaller set of components 
that would describe the relationships between the 
POWER measures more concisely. Four components 
were produced with eigenvalues greater than 1 that 
accounted for 71.2% of the variance in the data. 

Table 5.  Descriptive statistics for POWER measures obtained at 4-minute intervals. 

Descriptive statistics 
Power Measures Mean SD 

Total N aircraft controlled 
Max aircraft controlled simultaneously 
Average time aircraft under control 
Avg Heading variation 
Avg Speed variation 
Avg Altitude variation 
* Total N altitude changes

* Total N handoffs accepted

Avg time to accept handoff

* Total N handoffs initiated

Avg time until initiated HOs are accepted

N Radar controller data entries

N Radar controller data entry errors

N Data controller data entries

N Data controller data entry errors

* N Route displays

* N Radar controller pointouts

* N Data controller pointouts

* N data block offsets

* Total N CAs displayed

* Number of CA suppression entries

* N DRIs requested

* N DRIs deleted


7.20 2.73 
5.48 2.35 

158.35 34.38 
1.06 0.86 
4.22 2.46 
2.00 1.48 
3.50 2.20 
1.15 1.12 

25.91 27.58 
1.98 1.29 

41.00 45.45 
11.35 5.54 

0.23 0.58 
1.93 2.04 
0.08 0.27 
0.40 0.84 
0.08 0.27 
0.08 0.47 
0.15 0.43 
0.08 0.27 
0.05 0.22 
0.05 0.22 
0.03 0.16 

Note: * indicates variables excluded from further analysis. 
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The results of this analysis should be interpreted 
with some caution because 1) only 4-minute time 
segments were analyzed, and 2) only 40 observations 
from 4 sectors were available for analysis. Subsequent 
analyses using larger data sets should be conducted to 
obtain more stable results. However, the primary 
purpose of conducting this analysis was to derive a 
smaller number of variables to be used in later analy
ses. Table 7 contains the rotated component matrix 
for the 4 components. For ease of interpretation, 
correlations less than .3 were excluded. 

Component 1 was primarily related to the number 
of aircraft controlled, those controlled simultaneously, 
and R controller data entries. To a lesser extent, the 
component was also related to the time to accept 
handoffs and control duration. Component 1 was 
labeled Activity because higher values for these mea
sures were associated with the presence of more air-
craft in a sector that required more controller activity. 

Component 2 was related to variation in heading, 
speed, and altitude, and, to a lesser extent, control 
duration. Component 2 was labeled Low Altitude 
Maneuvers because these measures were related to 
aircraft maneuvering consistent with arrivals at and 
departures from low altitude sectors surrounding the 
St. Louis Lambert Airport. This interpretation is 
supported by a comparison of average heading, speed, 
and altitude variability, which were all significantly 
higher in low altitude sectors than in high altitude sectors 
(t(38) = 2.82, 5.75, and 3.49, respectively; p < .01 in all 
three cases). 

Component 3 was primarily related to R controller 
data entry errors and the time required to accept 
initiated handoffs. To a lesser extent, it was also 
negatively related to time to accept handoffs. These 
conditions were consistent with busy R controllers 
making more data entry errors, having to attend to 
whether the next controller had accepted handoffs 
that he/she had initiated, and taking longer to accept 
aircraft handed off to his/her sector. Thus, Compo
nent 3 was called Overload. 

Component 4 was primarily related to D controller 
data entries and D controller data entry errors. To a 
lesser extent, the component was also related to lower 
altitude variation and lower control duration. While 
the number of D controller data entries and errors 
were not related to the number of aircraft in the sector, 
the presence of aircraft that changed altitude less 
frequently and were in the sector for a shorter period 
of time was related to a higher number of D errors. 
Thus, Component 4 was called D Activity. 

Prediction of mental workload 
Correlations. Table 8 shows correlations between 

the ATWIT subjective workload rating, the four ob
jective workload components, the two components 
related to number and duration of communication 
events, and the three communication content compo
nents. By definition, the principal components are 
unrelated, so their inter-correlations are 0. The mean 
ATWIT rating had a correlation of .80 (p < .01) with 
Activity, a correlation of .62 (p < .01) with All 

Table 7. Rotated component matrix for 4 components representing reduced set of 
POWER measures. 

Power Measures Comp 1: Comp 2: Comp 3: Comp 4: 
Activity Low Alt Overload D activity 

Maneuvers 
Max aircraft controlled .94 
simultaneously 
Total N aircraft controlled .94 
Avg Heading variation .81 
Avg Speed variation .92 
Avg Altitude variation .73 -.33 
Avg time to accept handoff .40 -.40 
Avg time until initiated HOs are .80 
accepted 
Avg time aircraft under control .44 .54 -.39 
N Radar controller data entries .76 
N Radar controller data entry .87 
errors 
N Data controller data entries .76 
N Data controller data entry .77 
errors 

*Correlations less than .3 are not displayed. 
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Communications Number and Duration, a correlation 
of .65 (p < .01) with Instructional Clearances, and a 
correlation of .36 (p < .05) with Individual Communi
cation Duration. 

Activity was significantly correlated with All Com
munications Number and Duration (r = .63, p < .01), 
Clearances ( r = .52, p < .01), and with Frequency 
Changes/Courtesies  (r = .36, p < .05). The Overload, 
Low Altitude Maneuvers, and D Activity components 
were not significantly correlated with any of the other 
variables. All Communications Number and Duration 
was significantly correlated with all three content 
components: For Requests/Advisories, r = .65, p < .01; 
for Frequency Changes/Courtesies, r = .39, p < .05; and 
for Instructional Clearances, r = .54, p < .01. Individual 
Communication Duration was not significantly corre
lated with any of the content components. 

Regression. A set of analyses was performed to assess 
the effectiveness of alternative multiple regression 
models in predicting the subjective ATWIT ratings. 

Table 9 shows the results of these analyses. Row 1 
shows the multiple correlation of the full model 
containing the 4 taskload, 2 communication number 
and duration, and 3 communication context compo
nents as predictors. The multiple correlation of the 
full model with the ATWIT ratings was R = .88, 
accounting for about 77% of the variance in the 
subjective workload ratings. Succeeding lines show 
multiple correlations between alternative (reduced) 
regression models containing fewer than the total 
number of predictors. The column containing F for 
the test of R2 change compares the relative effective
ness of a reduced model with the effectiveness of the 
full model in predicting the ATWIT rating. If the 
probability is greater than .05 that the change in R2 

between the two models is significantly different from 
0, then the reduced model is considered to be as 
effective as the full model in predicting subjective 
workload. On the other hand, if the probability is less 
than or equal to .05 that the change in R2 between the 

Table 9. Results of analyses comparing alternative multiple regression models predicting ATWIT 
ratings. 

Regression model R R2 R2 F for test df p 
change of R2 

change 
1. Full model containing all taskload, 0.88 0.77 N/A N/A

communication number and duration, and

communication context components

Reduced models based on Taskload components 
2. Model containing all taskload 
components 

0.82 0.67 0.11 2.80 5, 30 .034 

3. Model containing only the Activity 
component 

0.80 0.65 0.13 2.13 8, 30 .064* 

4. Model containing all taskload 
components except Activity 

0.15 0.02 0.75 16.66 6, 30 .000 

Reduced models based on communications components 
5. Model containing five communication 
components 
6. Model containing two communication 
number and duration components 
7. Model containing three communication 
context components 
8. Model containing All Communications 
Number and Duration and Instructional 
Clearances components 
9. Model containing Instructional 
Clearances component 

0.78 0.60 0.17 5.67 4, 30 .002 

0.72 0.52 0.25 4.78 7, 30 .001 

0.69 0.48 0.41 6.49 6, 30 .000 

0.73 0.53 0.25 4.67 7, 30 .001 

0.65 0.43 0.35 5.81 8, 30 .000 

Reduced model combining taskload and communications components 
10. Model containing Activity, All 0.85 0.72 0.05 1.11 6, 30 .378*

Communications Number and Duration,

and Instructional Clearances components

11. Model containing Activity and 0.85 0.72 0.05 1.02 7, 30 .439* 
Instructional Clearances components 

* Indicates reduced models that predicted ATWIT ratings as well as the full model. 
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two models is significantly different from 0, then the 
reduced model is not considered to be as effective as 
the full model in predicting subjective workload. The 
goal is to identify a reduced model that contains as few 
predictors as possible, but accounts for a high enough 
percentage of the variance in the dependent variable to 
be considered equivalent to the full model. 

The analysis of 10 reduced models is shown in 
Table 9 (see rows 2-11). The first group of analyses 
(rows 2-4) compared reduced models containing dif
ferent combinations of taskload components with the 
full model. The second group of analyses (rows 5-9) 
compared reduced models containing different com
binations of communication components with the 
full model. The final group of analyses (rows 9-11) 
compared reduced models containing combinations 
of both taskload and communications components 
with the full model. 

As an example, row 2 compared a reduced model 
containing all the taskload components with the full 
model. The model containing all the taskload compo
nents had an R2 of .67, compared with the full model’s 
R2 of .77. The F computed to assess the R2 change of 
.11 had a value of 2.80, and the probability was .034 
that the change in R2 was greater than 0. Thus, the 
reduced model containing all the taskload compo
nents was significantly different than the full model in 
predicting ATWIT ratings and, thus, was not as 
effective as the full model. 

A second example is shown on line 3, which compared 
a reduced model containing only the Activity taskload 
component with the full model. The model containing 
only the Activity component had an R2 of .65, compared 
with the full model’s R2 of .77. The F computed to assess 
the R2 change of .13 had a value of 2.13, and the 
probability was .064 that the change in R2 was greater 
than 0. Thus, using an alpha level of .05, the reduced 
model containing only the Activity component predicted 
ATWIT ratings as well as the full model. 

A third example is shown on line 5. The reduced 
model containing all the taskload components except 
the Activity component had an R2 of .02, compared 
with the full model’s R2 of .77. The F computed to 
compare the R2 change of .75 had a value of 16.66, and 
the probability was less than .0001 that the change in 
R2 was greater than 0. Thus, the reduced model 
containing all the Taskload components except the 
Activity component did not predict the ATWIT rat
ings as well as the full model. 

Four of the reduced models shown in Table 9 (one 
containing the Activity component alone, one con
taining the Activity, All Communications Number and 
Duration, and Instructional Clearances components, 

and one containing the Activity and Instructional 
Clearances components) predicted ATWIT ratings as 
well as the full model. Thus, for a reduced model to be 
equivalent to the full model, it must contain the 
Activity component. None of the reduced models 
containing any combination of the communications 
components were equivalent to the full model unless 
they contained the Activity component. 

Discussion and Conclusions 

We formed several hypotheses about the relationships 
between the communications variables, objective taskload 
variables, and subjective workload. These were: 
1. Total number and duration of communication events 

will have a significant and positive correlation with 
workload and taskload. 

2. Average time for an individual communication event 
should be negatively related to workload and taskload. 

3. The content of communication events may be related 
to sector activity. 

4. Communication events will not provide a unique 
contribution to the prediction of subjective workload, 
over and above the prediction contributed by the 
taskload measures. 

Before conducting the analyses, we derived sets of 
independent principal components to reduce the num
ber of variables analyzed to a manageable set, given the 
number of observations in the data set. Thus, the 
analyses that tested the hypotheses were based on 
components consisting of a weighted combination of 
communication and taskload variables instead of the 
individual variables. Examination of Table 8 shows 
that four components, Activity, All Communications 
Number and Duration, Individual Communications 
Duration, and Instructional Clearances, had signifi
cant correlations with the ATWIT ratings. Thus, 
certain aspects of taskload, the number and duration 
of communication events, and the content of commu
nications are all related to subjective workload. 

Table 8 also shows that the All Communications 
Number and Duration, Frequency Changes/Courtesies, 
and Instructional Clearances components were signifi
cantly correlated with the Activity component. Thus, 
communication activity is related to taskload, espe
cially clearances involving instructions to proceed. 

Our prediction about the duration of individual 
communications was found to be only partially accu
rate. While the Individual Communications Duration 
component was significantly related to the ATWIT 
rating, it was not significantly correlated with any of 
the taskload components. Moreover, the principal 
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components analysis did not produce different com
ponents for different speakers, suggesting that the 
identity of the speaker who generated the communi
cation events was not important. 

We did, however, find that the content of communi
cations was significantly related to certain types of sector 
activity. Instructional Clearances and Frequency Changes/ 
Courtesies were significantly correlated with Activity. 

Because we expected communications variables to 
overlap extensively with the taskload variables, we 
hypothesized that variables measuring communica
tion events would not contribute uniquely to the 
prediction of subjective workload, over and above the 
prediction contributed by the taskload measures. Table 
9 compared the effectiveness of a number of reduced 
regression models containing different combinations 
of taskload and communications variables in predict
ing subjective workload, as compared with the effec
tiveness of the full model containing all the variables. 
The full model accounted for 77% of the variance in 
subjective workload while the reduced models ac
counted for anywhere from 2% to 72% of the vari
ance. Three reduced models were as effective 
(statistically) as the full model in predicting subjective 
workload. The reduced model containing Activity 
accounted for 65% of the variance in subjective 
workload. The reduced model containing Activity, All 
Communications Number and Duration and Instruc
tional Clearances accounted for 72% of the variance in 
subjective workload. The reduced model containing 
Activity, All Communications Number and Duration, 
and Instructional Clearances also accounted for 72% 
of the variance in subjective workload. 

A model containing all the taskload components 
except Activity predicted subjective workload very poorly, 
as compared with the effectiveness of the full model. 
Furthermore, none of the models containing only a 
combination of communications variables predicted 
subjective workload as well as the full model. For ex-
ample, a reduced model containing all communications 
components accounted for only 60% of the variance in 
subjective workload, a model containing the two Com
munications number and duration components ac
counted for only 52% of the variance, and a model 
containing the three Communications context compo
nents accounted for only 48% of the variance. 

An interesting finding from this analysis was that 
Activity must be present in order for a reduced regres
sion model to predict ATWIT ratings as well as the 
full model. This result suggests that variables whose 
values as a function of increased air traffic activity 
(such as the number of aircraft, data entries, control 

duration, time to accept handoffs, etc.) have an 
important effect on the controllers’ perception of 
workload. 

The question that must be answered is whether the 
inclusion of any communications measures added a 
unique component to the prediction of subjective 
workload over and above the contribution of taskload. 
According to the analysis, Activity alone was statistically 
equivalent to the full model accounting for 65% of the 
variance in subjective workload,. However, adding the 
Instructional Clearances component produced a reduced 
model that contained only two variables and accounted 
for 72% of the variance in subjective workload. While 
Activity alone seems to be a good predictor of subjective 
workload, the combination of Activity and Instructional 
Clearances is slightly better. 

Thus, these data suggest that those who only have 
access to SAR files will be able to derive a very good 
estimate of subjective workload using controller ac
tivity data. However, those who have access to both 
SAR files and recordings of communication events 
and want to invest the time required to analyze the 
transcripts may be able to obtain a better estimate of 
subjective workload. The question is whether the 
information gained is worth the additional time in-
vestment. And while it appears that it is not necessary 
to analyze voice communications data to assess con-
troller workload adequately, the analysis of communi
cations data is often valuable for other reasons. 

The constraints associated with this study should 
be considered when interpreting these results. First, 
the limited selection of sectors (only four, all at one 
center, and all surrounding a busy airport) and traffic 
samples (two per sector) limit the ability to generalize 
these results to other sector types, traffic situations, 
and facilities. Second, the number of observations 
included in the analysis limited our confidence in the 
results. Third, SMEs provided subjective ratings of 
the workload they thought other controllers were 
experiencing instead of rating their own workload. If 
those who worked the traffic had rated their own 
workload, the results might have been different. 
Fourth, we assumed that the ATWIT was the most 
appropriate method for measuring subjective 
workload. If other workload measures were obtained, 
such as the NASA TLX (Hart & Staveland, 1988) or 
other physiological methods, the results might have 
been different. These other methods may measure 
different aspects of workload (because the TLX is a 
post-hoc method obtained only once, after the traffic 
sample, and physiological measures may be influ
enced by factors other than subjective workload.) 
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Fifth, the workload experienced during all the traffic 
samples was fairly low, as assessed by the SMEs. 
Perhaps the effectiveness of communications mea
sures would have been more pronounced if a higher 
workload had been experienced. 

Even if the controller/pilot communications vari
ables had been found to provide a larger contribution 
to the prediction of subjective workload, this relation-
ship might be expected to change soon. Controller/ 
Pilot Data Link Communications (CPDLC), will 
transmit some pilot/controller communications via a 
digital channel, thus increasing the visual processing 
and reducing the auditory processing of communica
tions. It has been proposed that using CPDLC will 
reduce controller workload, but more likely it will 
only change the distribution of workload from both 
visual and aural to a primarily visual modality. Add
ing visual tasks to an already extensive set of tasks 
currently performed by controllers might increase 
overall workload more than would be compensated 
for by reducing the number of voice communications 
to which the controller must attend. However, re
gardless of the effect on workload of increasing the 
visual component of a controller’s activity, the 
workload associated with verbal communications 
should be significantly reduced when most are trans
ferred to another information source. 
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